Elektromagnetisch Akustische MRT Simulation Entwicklung eines Digitalen Zwillings

Joint Presentation by:

Peter Binde, Dr. Binde Ingenieure

Zong Fang Chen, Siemens Shenzhen Magnetic Resonance Ltd, China, (Siemens-Healthineers)

Karlsruhe, 21.11.2023, PLM-Benutzergruppe – SIG Simulation

Content

Dr. Binde Ingenieure

- 1. Introduction, Motivation
- 2. MRT Key Components
- 3. MRT Key Components, Lorentzkräfte
- 4. Lorentzkräfte der x,y,z-Coils und Schall-Entstehung
- 5. Gradient Coil Wires
- 6. Wirbelströme und deren Lorentzkräfte
- 7. Effekt der Frequenzverdoppelung
- 8. Akustische Messung
- 9. Messung der Eigenmoden der Gradientenspule
- 10. Anforderungen an das Projekt

- 11. Verwendete Software und Solver
- 12. Koppeln der Domänen zwei mögliche Methoden
 - 12.1 Magnetik transient + Fourier + Akustik frequenz

12.2 Magnetics frequenz (preloaded) + Acoustics frequenz

- 13. Magnetics Modell (vereinfachte Darstellung)
- 14. Akustik Modell (vereinfachte Darstellung)
- 15. Typisches Akustik Ergebnis
- 16. Ergebnisplots des Schalldrucks
- 17. Adaption an die Messungen
- 18. Literatur, Quellen

1. Introduction, Motivation

Die auf den Patienten wirkende Lautstärke in einem MRT ist hoch und unangenehm.

Akustische Messungen sind aufwändig und unflexibel. Kaltkopf-Aktivität

Daher soll ein <u>Simulationsmodell</u> für zukünftige Optimierungen entwickelt werden.

Das Modell muss die elektromagnetischen Felder der Hauptkomponenten nachbilden und in mechanische Kräfte überführen. Diese werden dann in einer akustischen Simulation als Anregung verwendet.

- Das fertige Modell wird als <u>Simcenter-Datensatz</u> dem Kunden übergeben. Eine spezielle Schulung und weiterer Support stellen den Erfolg sicher.
- Neu an dieser Arbeit ist die <u>vollständige 3D FEM-Simulation</u> sowohl des elektromagnetischen, als auch des akustischen Systems. Hohe Genauigkeit und hohe Detaillierung ist daher möglich.
- MRT (Magnetresonanztomographie, englisch: Nuclear Magnetic Resonance; NMR) wird häufig auch als Kernspintomographie oder kurz als Kernspin bezeichnet. Es handelt sich dabei um ein bildgebendes Verfahren zur Untersuchung der inneren Organe.

Dr. Binde Ingenieure

Design

Binde Ingenieure,

2. MRT Key Components

Dr. Binde Ingenieure LN Design & Engineering

Gradientenspule ohne Epoxidharz-Ummantelung

Bilder: [Ott]

Gradientensystem vor dem Magnet

3. MRT Key Components, Lorentzkräfte

Main coils

Für Akustik wichtig:

- Gradient coils (x,y,z)
- Main magnet windings

Ladung

В

Gehäuse

Lorentzkräfte

- *F* = Vektor-Keuzprodukt von elektrischem Strom *I* und magnetischer Flussdichte *B*
- entsteht auf den x,y,z Coils an jedem Punkt

Lorentz

Strom

 entsteht im Gehäuse indirekt wegen induzierten Wirbelströmen (Eddy-Currents)

Gradient coils

Radiation shields

© Dr. Binde Ingenieure, Design & Engineering GmbH: alle Rechte vorbehalten. All rights reserved.

4. Lorentzkräfte der x,y,z-Coils und Schall-Entstehung

Je nach Richtung der Coil-Windung entstehen <u>Lorentzkräfte</u> in verschiedene Richtung. Aufgrund der <u>geometrischen Komplexität</u> schwer vorhersehbar – Simulation nötig!

Bildquelle: [Schmitt], [Ott]

5. Gradient Coil Wires

Drei Spulensysteme X,Y,Z erzeugen die benötigten Gradientenfelder für das Verfahren.

Ein wechselndes <u>Stromsignal</u> mit Grundfrequenz ca. 700 Hz regt die Spulen an.

8. Wirbelströme und deren Lorentzkräfte

- Außerdem führt die Schaltung von Gradienten zu zeitlich variierenden Magnetfeldern in der Umgebung. Diese Änderung des magnetischen Flusses in leitenden Teilen des MRT-Systems führt zur Induktion von Wirbelströmen (Faraday-Gesetz). Die induzierten Wirbelströme erzeugen durch das Magnetfeld eine zusätzliche Lorentzkraft.
- Es gibt also <u>zwei Ursachen</u> für Lorentzkräfte: Das sind die radialen Lorentzkräfte durch die Gradientenströme und die Lorentzkräfte durch induzierte Wirbelströme (Eddy-Currents).
- Im ersten Ansatz wurden die Wirbelströme in der Simulation <u>vernachlässigt</u>. Für den ersten Lautstärkepeak ist das auch möglich. Für den zweiten aber schon nicht mehr.

Eddy-Currents durch X-Coil Anregung

Lorentzkräfte durch X-Eddy-Currents

7. Effekt der Frequenzverdoppelung

Dr. Binde Ingenieure

Grund: 90 Grad <u>Phasenverschiebung</u> des induz.Stroms (Faraday) und *F* = Cross[*I*, *B*] Dies muss bei allen Frequenz-Domain Simulationen korrekt <u>berücksichtigt</u> werden!

8. Akustische Messung

An 5 verschiedenen <u>Positionen</u> im MRT wurde die Lautstärke gemessen. Jeweils getrennt für die X,Y und Z Coil-Anregung.

Das ergibt 15 Spektren, in denen immer 2 Peaks um ca. 700 und 1400 Hz erscheinen. Also gibt es <u>30 Zahlenwerte</u>, die mit der Simulation verglichen werden.

Die Differenzen müssen alle kleiner als ein Grenzwert sein zur Akzeptanz der Simulation.

Messaufbau

Dr. Binde Ingenieure

۔ ص

9. Messung der Eigenmoden der Gradientenspule

Die Materialeigenschaften <u>Dichte und E-Modul</u> haben großen Einfluss auf das Ergebnis der akustischen Simulation. Auch die Steifigkeiten von Verbindungsteilen, sowie die Aufstellung. Um mehr Klarheit über diese Parameter zu bekommen, wurden die <u>Eigenmoden</u> der Gradientenspule gemessen.

Das Simulationsmodell wurde an diesen gemessenen Eigenmoden <u>kalibriert</u>. D.h. Nastran Solutions 103 bei verschiedenen E-Modul, Dichte, usw. wurden durchgeführt.

10. Anforderungen an das Projekt

- 1. Simulate the Lorenz force on X Y and Z coil wires caused by Magnet coils
- Perform a transient magnetic simulation with 1D elements for the CG wires and 3D for the remaining parts.
- Main results are the Lorentz forces on the wires
- 2. Mapping the force to the gradient coil (GC) 3D geometry
- Perform a deformation simulation with these forces.
- The transient forces would be fourier-transformed into frequency domain for further processing in Nastran
- 3. Simulate the vibration and acoustic noise of GC
- Simulate the vibration and acoustic noise of GC, GC would consider as a whole body with resin casted
- 4. Compare the noise with real test value
- Perform the adaption to match the real test value to achieve within a given dB tolerance.
- 5. Writing a tutorial for the setup of such a model and technique report for the analysis
- 6. Training by this tutorial (about the half for magnetics, half for acoustics)

7. Support: technique support until the expert in SSMR understand and repeat all the steps in the simulation

11. Verwendete Software und Solver

Elektromagnetische Software: NX-MAGNETICS (Dr. Binde)

Gründe:

- 1D Elemente möglich (coils).
- Integration in Simcenter 3D,
- Alle Frequenzen sind möglich (high/medium/low)
- Anpassungen vom Software-Hersteller leicht möglich

Akustik Software: SC-NASTRAN

Gründe:

- Beste Leistung in Akustik und Dynamik
- Tool der Wahl bei Siemens

 ✓ Solution Name MagneticsSolution1 Solver MAGNETICS Analysis Type 3D Electromagnetics Solution Type Magnetodynamic Transient Analysis Type Solution Type Magnetodynamic Transient Magnetodynamic Transient ✓ Magnetodynamic Transient ✓ Magnetodynamic Transient ✓ Magnetodynamic Transient ✓ Magnetodynamic Transient ✓ Plot ✓ Solution Type Solution Type Solution Type Initial Conditions ✓ Coupled Thermal ✓ Coupled Motion ✓ Coupled Particle ✓ Coupled Particle ✓ Nodal Force - entire (vint Internation Properties ✓ Table ✓ Total Force - entire (vint Internation Properties ✓ Table ✓ Total Lorentz Force ✓ Total Lorentz Force ✓ Total Lorentz Force 	
Name MagneticsSolution1 Solution Solver MAGNETICS Name Acor Analysis Type 3D Electromagnetics Solver Simu Solution Type Magnetodynamic Transient Analysis Type Solution Type Reference Set Entire Part Solution Type Solution Type • Magnetodynamic Transient Magnetic Fluxdensity Initial Conditions Coupled Thermal Coupled Motion Coupled Particle Coupled Particle Current Density Electric Fluxdensity Electric Potential (phi-f Magnetic Potential (phi-f Nodal Moment - entire (vi Material Properties Table Total Lorentz Force Magnetic Force Total Lorentz Force Total Lorentz Force Total Lorentz Force Magnetic Forece Magnetic Force	
Solver MAGNETICS Name Acor Analysis Type 3D Electromagnetics Solver Sime Solution Type Magnetodynamic Transient Analysis Type Vibre Reference Set Entire Part Solution Type Solution Type Solution Type • Magnetodynamic Transient • Plot Solution Type Solution Type Solution Type • Magnetodynamic Transient • Plot Solution Type Solution Type Solution Type • Magnetodynamic Transient • Plot Solution Type Solution Type Solution Type • Output Requests • Plot Magnetic Fluxdensity Incompressible Fluid Incompressible Fluid • Coupled Thermal Electric Fluxdensity Electric Fluxdensity Electric Fluxdensity Electric Coupled Darticle General • Coupled Motion © Current Density Eldy Current Losses Dr Bulk Data Bulk Data • Magnetic Potential (phi-F Modal Moment - entire (vir Solution Type Solution Type Solution Type • Table Votal Force - entire (virt Solution Type Solution Type Solution Type • Table Votal Loren	
Analysis Type 3D Electromagnetics Solver Simm Solution Type Magnetodynamic Transient Analysis Type Solution Type Reference Set Entire Part Solution Type Solution Type • Magnetodynamic Transient • Plot Reference Set Entire • Output Requests • Plot Solution Type Solution Type • Initial Conditions • Plot Solution Type Solution Type • Coupled Thermal • Plot Incompressible Fluid • Coupled Motion © Current Density Electric Fluxdensity Incompressible Fluid • Coupled Particle © Current Density Electric Potential (phi-f Solution Type Solution Type • Nodal Force - entire (vi Nodal Moment - entire Solution Type Solution Type Solution Type • Table ✓ Total Force - entire (virt Total Lorentz Force Incompressible Fluid Incompressible Fluid	AcousticsXYZ_MagPreloadedFreq
Solution Type Magnetodynamic Transient Analysis Type Vibr Reference Set Entire Part Solution Type SOL • Magnetodynamic Transient Reference Set Entire • Magnetodynamic Transient Reference Set Entire • Magnetodynamic Transient Reference Set Entire • Output Requests • Plot SOL 111 Modal Frequests • Coupled Thermal © Coupled Thermal Electric Fluxdensity • Coupled Motion © Current Density General © Coupled Particle © Current Density Bulk Data © Magnetic Potential (a-1) Electric Potential (phi-F Modal Moment - entire (vi © Nodal Force - entire (vi Nodal Moment - entire (vi Material Properties • Table © Total Force - entire (virt Intal Lorentz Force	imcenter Nastran
Reference Set Entire Part Solution Type SOL Magnetodynamic Transient Output Requests Time Steps Initial Conditions Coupled Thermal Coupled Elasticity Coupled Motion Coupled Particle Coupled Particle Coupled Particle Solution Type Reference Set Magnetic Fluxdensity Electric Fluxdensity Electric Fluxdensity Electric Fluxdensity Electric Fluxdensity Electric Potential (a-I Electric Potential (phi-F Modal Force - entire (vi Nodal Moment - entire Forcedensity - entire (vi Material Properties Table Total Korentz Force Total Lorentz Force Total Lorentz Force Total Lorentz Moment 	/ibro-Acoustic
 Magnetodynamic Transient Reference Set Entire Output Requests Time Steps Initial Conditions Coupled Thermal Coupled Elasticity Coupled Motion Coupled Particle Magnetic Fluxdensity Electric Potential (a-I Bulk Data 	OL 111 Modal Frequency Response
Output Requests Time Steps Initial Conditions Coupled Thermal Coupled Elasticity Coupled Motion Coupled Particle Coupled Particle Output Requests Output Requests	ntire Part
Coupled Elasticity Coupled Motion Coupled Particle Cou	equency Response
Magnetic Potential (a-I Electric Potential (phi-F Nodal Force - entire (vi Nodal Moment - entire Forcedensity - entire (vi Lorentz Force (j x b) Poynting Vector Material Properties Total Force - entire (virt Total Force - entire (virt Total Lorentz Force Total Lorentz Force	
✓ Table ✓ Total Force - entire (virt	 Eigenvalue Method for Structure RDMODES for Structure Exclude Modes for Structure Response Eigenvalue Method for Fluid Exclude Modes for Fluid Response Residual Vectors
	 Damping for Structure Modal Damping (per Mode) Structural Damping Structural Damping Parameters (Spatial) Damping for Fluid

12. Koppeln der Domänen – zwei mögliche Methoden

Das Koppeln der Domänen geschieht durch Übertragung der elektromagnetischen Kräfte auf die Akustik

1. Stromsignal

(a) MRI model MAGNETOM Sola 1.5 T, courtesy of Siemens Health- (b) Simplified MRI showing the three main components: main coils, gradient coils and radiation shields.

Dr. Binde Ingenieure

<u>Methode 1:</u> Magnetisch transient + Fourier + Akustik frequenz

<u>Methode 2:</u> Magnetisch frequenz (preloaded) + Akustik frequenz

Design & Engineering

12.1 Magnetik transient + Fourier + Akustik frequenz

- 1. Die elektromagnetische Simulation wird im Zeitbereich durchgeführt. Es resultieren elektromagnetische Lorentz-Kräfte an jedem Knotenpunkt
- 2. die Lorentz-Kräfte werden an jedem Knotenpunkt fourier-transformiert.
 - Für diese Fourier-Transformation haben wir ein in Simcenter 3D verfügbares Pre-Solver-Tool namens "Model and Load Preprocessing" in Kombination mit einer Operation namens "Time Signal Processing" verwendet.
 - 2. Dieses Werkzeug liest eine Ergebnisdatei im unv-Format mit transienten Knotenkräften, wie sie vom Magnetics-Solver ausgegeben wird. Es führt die Fourier-Transformation für jeden Knoten durch und schreibt eine Datei in einem Format aus, das als Last in einer Nastran-Akustiksimulation verwendet werden kann.
 - 3. Das Feature wird von der NX-Benutzeroberfläche wie folgt aufgerufen:

3. Die akustische Simulation wird im Frequenzbereich durchgeführt. Die Kräfte werden von dem Tool automatisch eingelesen.

12.1 Magnetik transient + Fourier + Akustik frequenz

Vorteile dieser Methode

- <u>Sicher</u>, weil durch die transiente Magnetics-Simulation <u>alle Effekte</u>, wie Nichtlinearität, Verdoppelung der Frequenzen, Reluktanzkräfte, ..., berücksichtigt werden.
- Das Tool für die Fourier-Transformation arbeitet sehr <u>schnell</u> und sicher.

Nachteile

- <u>Aufwändig</u>: Auch schon eine Periode transient zu simulieren dauert lange.
- Evtl. können transiente <u>Einschwingeffekte</u> dazu führen, dass große Zeiträume (viele Perioden) simuliert werden müssen, bis das Ergebnis eingeschwungen ist.
- In unseren Simulationen war Einschwingen der Fall, sobald das Gehäuse im Modell war. Es wurden 13 Perioden berechnet und die letzten 3 wurden verwendet.

12.2 Magnetics frequenz (preloaded) + Acoustics frequenz^D

1. Stromsignal Fourier-Transformation

Nur das transiente Stromsignal wird durch Fouriertransformation in ein Frequenzspektrum überführt. Es ergeben sich die <u>enthaltenen Frequenzen</u> und ihre jeweiligen Anteile. Das sind recht genau die Frequenzen, die auch in den Messungen dominant auftreten.

2. Magnetics-Simulation

Die magnetische Simulation wird im Frequenzbereich mit <u>den ersten zwei</u> dieser Frequenzen durchgeführt.

Die entstehenden räumlichen Lorentzkräfte (Re/Im) werden als Node-ID-Feld abgespeichert.

3. Akustik-Simulation

Die Lorentz-Kräfte werden mit Re- und Im-Anteil getrennt als Force-Feld aufgebracht.

Design & Engineering

12.2 Magnetics frequenz (preloaded) + Acoustics frequenz^{Dr. Binde Ingenieure}

Besonderheiten bei der Magnetik-Simulation

 Zusätzlich ist es erforderlich eine statische Vorberechnung durchzuführen, um das äußere Magnetfeld durch die Main-Spulen zu berücksichtigen. Dieses muss in der Freq.-Rechnung bei den Lorentzkräften dazuaddiert werden. Dafür werden ein paar Zeilen zusätzlicher Code in den Solverinput eingefügt.

Besonderheiten bei der Akustik-Simulation

 Außerdem ist es bei dieser Methode erforderlich den vorher beschriebenen Effekt der <u>Frequenzverdoppelung</u> zu berücksichtigen. D.h. die vorher berechneten Lorentzkräfte auf dem Gehäuse werden mit doppelter Frequenz im akustischen Modell aufgebracht.

Vorteile dieser Methode:

- Magnetik Simulation ist sehr <u>schnell</u>, nur ein Rechenschritt ist erforderlich
- Einschwingen: Es kommt sofort das <u>eingeschwungene</u> Ergebnis heraus.
- Für uns wurde diese zur Methode der Wahl.

Nachteile:

Die Methode ist <u>umständlicher</u> beim Erstaufbau

13. Magnetics Modell (vereinfachte Darstellung)

Dr. Binde Ingenieure

Modellgröße

- Elemente: 5.185.880
- Freiheitsgrade: 4.620.322

Herausforderung:

 viele 1D-Elemente in das 3D Mesh einfügen (node-to-node)

Rechenzeit:

- 2.5 h (Freq-Rechnung)
- Tage (Trans.Rechnung bei vielen Perioden)

Bildquelle [Wang]

14. Akustik Modell (vereinfachte Darstellung)

<u>Anzahlen</u>

- Elemente: 5.647.392
- Beam-Elements: 158.362

Simulations-Navigator

Simulation Navigator

Name			
MRI_MagAcoustics_fer	m1_sim3.sim		
🖃 🖌 🍘 🔄MRI_MagAcous	tics_fem2.fem		
MRI_MagAcous	tics_fem1_i.prt		
🕂 🔽 🗁 Polygon Geometry		V7 Mag	Dreloa
	Acoustics	neratures	Telua
🕂 √ ° 0D Collectors	- Sim	ulation Of	oiects
🗄 🖌 🌈 1D Collectors		Automatio	cally N
+ 🖌 🎸 2D Collectors	- Con	straints	
🗉 🖌 🕼 3D Collectors		Fixed(1)	
+ F Is Fields	- V • F	ixed Supe	rCon
E CSYS	- 🚰 Forcing	, Frequenc	ies
Selection Recipes	🖃 🖶 CoilX at	tPeak1	
⊕] Groups	E 📥 Loa	ds	
+ Fields	🛨 - 🏹 I	Frequency	Exci
• 🏫 Modeling Objects	🛨 - 🏹	Frequency I	Exci
+ C Regions	🖃 🚰 Ford	cing Freque	nci
E Simulation Object Container		ForcingFreq	Pe
+ Constraint Container		tPeak1	
+ V Load Container	⊡ d CoilZ at	iPeak1	
+ V Solver Sets		tPeak2	
+ AcousticsXYZ MagTrans		tPeak2	
AcousticsXYZ MagPreloadedFreq	⊕ ⊕ CoilZ at	tPeak2	
·	+ C Kesults		

Knoten: 989.352 Mass Elements: 2.848

Feder-Elemente: 74

Ansicht eines ähnlichen Modells

15. Typisches Akustik Ergebnis

Die Abbildung zeigt ein typisches akustisches Ergebnis, wie es an einem Ablesepunkt herauskommen kann.

© Dr. Binde Ingenieure, Design & Engineering GmbH: alle Rechte vorbehalten. All rights reserved.

16. Ergebnisplots des Schalldrucks

SH3033588357_MRI_MagAcoustics_fem1_sim3 : AcousticsXYZ_MagPreloadedFreq Result

SH0003599357_MRI_MagAcoustics_fem1_sim3 : AccusticsXYZ_MagPreloadedFreq Result

SH0003589357 MRI MasAcoustics fem1 sim3 : AcousticsXYZ MagPreloadedFree Result

17. Adaption an die Messungen

Ca. 100 Simulationen wurden durchgeführt mit dem Ziel das Simulationsmodell an die 30 akustischen Messergebnisse anzupassen. Hier einige Beispiele für Variationen:

- Verkleinern/Vergrößern der akustischen Frequenz-<u>Abtast-Rate</u>
- Zufügen/Wegnehmen von <u>Masse</u>
- Ändern des <u>E-Moduls</u> der Coil-Windungen und des Resin
- Ändern der <u>Federsteifigkeit</u> der Verbindungen von Gradientenspulen zum Gehäuse oder von Gehäuse zur Erde
- Ohne <u>Gehäuse</u> oder mit Gehäuse
- Ablesen von Punkten nahe des eigentlichen Messpunkts
- Ändern der Parameter der <u>Fourier-</u>Transformation
- Ändern der FEM Elementordnungen: Mittelknoten an/aus, sowie der Elementgröße
- Magnetik: mit/ohne Impedance-Boundary-Condition am Gehäuse
- Nastran: Modale <u>Reduktion</u> (Sol111) oder direkte Lösung (Sol108)
- Mehr oder weniger <u>Dämpfung</u> für akustische Simulation

18. Literatur, Quellen

Dr. Binde Ingenieure

[Wang] PhD Thesis of Yaohui Wang, University of Queensland in 2017

[Zeitler] KERNSPINTOMOGRAPHIE, Einführung für Ärzte und Medizinstudenten, E. Zeitler, Deutscher Ärzte-Verlag Köln, 1984

[Ott]

Lautstärkereduzierte Magnetresonanztomographie, Dissertation von Martin Ott, Julius-Maximilians-Universität Würzburg, 2015

[Schmitt]

An Attempt to Reconstruct the History of Gradient-System Technology at Siemens Healthineers, Franz Schmitt; Stefan Nowak; Eva Eberlein https://marketing.webassets.siemens-healthineers.com/e2c5760b1e45c80e/ 475135ba0982/siemens-healthineers_magnetom-world-ISMRM_2022_Pioneers_of_Gradient_Systems.pdf

[RadiologyKey] https://radiologykey.com/principles-of-magnetic-resonance-imaging/